146 research outputs found

    Addressing censoring issues in estimating the serial interval for tuberculosis

    Full text link
    The serial interval (SI), defined as the symptom time between an infector and an infectee, is widely used to better understand transmission patterns of an infectious disease. Estimating the SI for tuberculosis (TB) is complicated by the slow progression from asymptomatic infection to active, symptomatic disease, and the fact that there is only a 5-10% lifetime risk of developing active TB disease. Furthermore, the time of symptom onset for infectors and infectees is rarely observed accurately. In this dissertation, we first conduct a systematic literature review to demonstrate the limited methods currently available to estimate the serial interval for TB as well as the few estimates that have been published. Secondly, under the assumption of an ideal scenario where all SIs are observed with precision, we evaluate the effect of prior information on estimating the SI in a Bayesian framework. Thirdly, we apply cure models, proposed by Boag in 1949, to estimate the SI for TB in a Bayesian framework. We show that the cure models perform better in the presence of credible prior information on the proportion of the study population that develop active TB disease, and should be chosen over traditional survival models which assume that all of the study population will eventually have the event of interest—active TB disease. Next, we modify the method by Reich et al. in 2009 by using a Riemann sum to approximate the likelihood function that involves a double integral. In doing so, we are able to reduce the computing time of the approximation method by around 50%. We are also able to relax the assumption of uniformity on the censoring intervals. We show that when using weights that are consistent with the underlying skewness of the intervals, the proposed approaches consistently produce more accurate estimates than the existing approaches. We provide SI estimates for TB using empirical datasets from Brazil and USA/Canada

    Displacement mechanism of polymeric surfactant in chemical cold flooding for heavy oil based on microscopic visualization experiments

    Get PDF
     In order to study the microscopic oil displacement mechanism of polymeric surfactant in chemical cold flooding for heavy oil, the indoor microscopic visualization displacement experiments were carried out. The flooding experiment of heavy oil was conducted by using water, osmotic modified oil displacing agent (a kind of polymeric surfactant) and water-in-oil emulsion (obtained by mixing polymeric surfactant and heavy oil) as displacing phases to study the mechanism of polymeric surfactant to enhance oil recovery in heavy oil reservoir. The experimental results show that the polymeric surfactant can increase the viscosity of the water phase, reduce the water-oil mobility ratio, expand the swept area, and there is no obvious fingering phenomenon which occurs during water flooding. The polymeric surfactant has the surfactant characteristics which can reduce the interfacial tension between oil and water to promote the formation of oil droplets with smaller droplet diameter. And the interfacial film composed of polymeric surfactant molecules will be formed on the surface of oil droplets to prevent the coalescence of oil droplets and improve the flow ability of oil phase. The water-in-oil emulsion can be miscible with the oil in heavy oil displacement process, and thus sweeps the areas such as the dead pores which cannot be swept by water and polymeric surfactant flooding, which increases the sweep efficiency to a certain extent.Cited as: Xu, F., Chen, Q., Ma, M., Wang, Y., Yu, F., Li, J. Displacement mechanism of polymeric surfactant in chemical cold flooding for heavy oil based on microscopic visualization experiments. Advances in Geo-Energy Research, 2020, 4(1): 77-85, doi: 10.26804/ager.2020.01.0

    Perceive, Ground, Reason, and Act: A Benchmark for General-purpose Visual Representation

    Full text link
    Current computer vision models, unlike the human visual system, cannot yet achieve general-purpose visual understanding. Existing efforts to create a general vision model are limited in the scope of assessed tasks and offer no overarching framework to perform them holistically. We present a new comprehensive benchmark, General-purpose Visual Understanding Evaluation (G-VUE), covering the full spectrum of visual cognitive abilities with four functional domains \unicode{x2014} Perceive, Ground, Reason, and Act. The four domains are embodied in 11 carefully curated tasks, from 3D reconstruction to visual reasoning and manipulation. Along with the benchmark, we provide a general encoder-decoder framework to allow for the evaluation of arbitrary visual representation on all 11 tasks. We evaluate various pre-trained visual representations with our framework and observe that (1) Transformer-based visual backbone generally outperforms CNN-based backbone on G-VUE, (2) visual representations from vision-language pre-training are superior to those with vision-only pre-training across visual tasks. With G-VUE, we provide a holistic evaluation standard to motivate research toward building general-purpose visual systems via obtaining more general-purpose visual representations

    Privacy-Preserving Visual Localization with Event Cameras

    Full text link
    We present a robust, privacy-preserving visual localization algorithm using event cameras. While event cameras can potentially make robust localization due to high dynamic range and small motion blur, the sensors exhibit large domain gaps making it difficult to directly apply conventional image-based localization algorithms. To mitigate the gap, we propose applying event-to-image conversion prior to localization which leads to stable localization. In the privacy perspective, event cameras capture only a fraction of visual information compared to normal cameras, and thus can naturally hide sensitive visual details. To further enhance the privacy protection in our event-based pipeline, we introduce privacy protection at two levels, namely sensor and network level. Sensor level protection aims at hiding facial details with lightweight filtering while network level protection targets hiding the entire user's view in private scene applications using a novel neural network inference pipeline. Both levels of protection involve light-weight computation and incur only a small performance loss. We thus project our method to serve as a building block for practical location-based services using event cameras. The code and dataset will be made public through the following link: https://github.com/82magnolia/event_localization

    A Study on the Effect of the Structural Parameters and Internal Mechanism of a Bilateral Gate-Controlled S/D Symmetric and Interchangeable Bidirectional Tunnel Field Effect Transistor

    Get PDF
    A bilateral gate-controlled S/D symmetric and interchangeable bidirectional tunnel field effect transistor (B-TFET) is proposed in this paper, which shows the advantage of bidirectional switching characteristics and compatibility with CMOS integrated circuits compared to the conventional asymmetrical TFET. The effects of the structural parameters, e.g., the doping concentrations of the N+ region and P+ region, length of the N+ region and length of the intrinsic region, on the device performances, e.g., the transfer characteristics, Ion–Ioff ratio and subthreshold swing, and the internal mechanism are discussed and explained in detail.The Natural Science Foundation of Liaoning Province No. 2019-MS-250. This fund is used to pay for the publication of papers

    Linking drought indices to impacts to support drought risk assessment in Liaoning province, China

    Get PDF
    Drought is a ubiquitous and recurring hazard that has wide-ranging impacts on society, agriculture and the environment. Drought indices are vital for characterising the nature and severity of drought hazards, and there have been extensive efforts to identify the most suitable drought indices for drought monitoring and risk assessment. However, to date, little effort has been made to explore which index (or indices) best represents drought impacts for various sectors in China. This is a critical knowledge gap, as impacts provide important ground truth information for indices used in monitoring activities. The aim of this study is to explore the link between drought indices and drought impacts, using Liaoning province (northeast China) as a case study due to its history of drought occurrence. To achieve this we use independent, but complementary, methods (correlation and random forest analysis) to identify which indices link best to drought impacts for prefectural-level cities in Liaoning province, using a comprehensive database of reported drought impacts in which impacts are classified into a range of categories. The results show that the standardised precipitation evapotranspiration index with a 6-month accumulation (SPEI6) had a strong correlation with all categories of drought impacts, while the standardised precipitation index with a 12-month accumulation (SPI12) had a weak correlation with drought impacts. Of the impact datasets, “drought-suffering area” and “drought impact area” had a strong relationship with all drought indices in Liaoning province, while “population and number of livestock with difficulty in accessing drinking water” had weak correlations with the indices. The results of this study can support drought planning efforts in the region and provide context for the indices used in drought-monitoring applications, so enabling improved preparedness for drought impacts. The study also demonstrates the potential benefits of routine collection of drought impact information on a local scale

    Structural parameters of galaxies in CANDELS

    Get PDF
    We present global structural parameter measurements of 109,533 unique, H-F160W-selected objects from the CANDELS multi-cycle treasury program. Sersic model fits for these objects are produced with GALFIT in all available near-infrared filters (H-F160W, J(F125W) and, for a subset, Y-F105W). The parameters of the best-fitting Sersic models (total magnitude, half-light radius, Sersic index, axis ratio, and position angle) are made public, along with newly constructed point-spread functions for each field and filter. Random uncertainties in the measured parameters are estimated for each individual object based on a comparison between multiple, independent measurements of the same set of objects. To quantify systematic uncertainties, we create a mosaic with simulated galaxy images with a realistic distribution of input parameters and then process and analyze the mosaic in an identical manner as the real data. We find that accurate and precise measurements-to 10% or better-of all structural parameters can typically be obtained for galaxies with H-F160W < 23, with comparable fidelity for basic size and shape measurements for galaxies to H-F160W similar to 24.5

    Analysis of Long Noncoding RNAs in Aila-Induced Non-Small Cell Lung Cancer Inhibition

    Get PDF
    Non-small cell lung cancer (NSCLC) has the highest morbidity and mortality among all carcinomas. However, it is difficult to diagnose in the early stage, and current therapeutic efficacy is not ideal. Although numerous studies have revealed that Ailanthone (Aila), a natural product, can inhibit multiple cancers by reducing cell proliferation and invasion and inducing apoptosis, the mechanism by which Aila represses NSCLC progression in a time-dependent manner remains unclear. In this study, we observed that most long noncoding RNAs (lncRNAs) were either notably up- or downregulated in NSCLC cells after treatment with Aila. Moreover, alterations in lncRNA expression induced by Aila were crucial for the initiation and metastasis of NSCLC. Furthermore, in our research, expression of DUXAP8 was significantly downregulated in NSCLC cells after treatment with Aila and regulated expression levels of EGR1. In conclusion, our findings demonstrate that Aila is a potent natural suppressor of NSCLC by modulating expression of DUXAP8 and EGR1

    ZYZ-168 alleviates cardiac fibrosis after myocardial infarction through inhibition of ERK1/2-dependent ROCK1 activation

    Get PDF
    Selective treatments for myocardial infarction (MI) induced cardiac fibrosis are lacking. In this study, we focus on the therapeutic potential of a synthetic cardio-protective agent named ZYZ-168 towards MI-induced cardiac fibrosis and try to reveal the underlying mechanism. ZYZ-168 was administered to rats with coronary artery ligation over a period of six weeks. Ecocardiography and Masson staining showed that ZYZ-168 substantially improved cardiac function and reduced interstitial fibrosis. The expression of α–smooth muscle actin (α-SMA) and Collagen I were reduced as was the activity of matrix metalloproteinase 9 (MMP-9). These were related with decreased phosphorylation of ERK1/2 and expression of Rho-associated coiled-coil containing protein kinase 1 (ROCK1). In cardiac fibroblasts stimulated with TGF-β1, phenotypic switches of cardiac fibroblasts to myofibroblasts were observed. Inhibition of ERK1/2 phosphorylation or knockdown of ROCK1 expectedly reduced TGF-β1 induced fibrotic responses. ZYZ-168 appeared to inhibit the fibrotic responses in a concentration dependent manner, in part via a decrease in ROCK 1 expression through inhibition of the phosphorylation status of ERK1/2. For inhibition of ERK1/2 phosphorylation with a specific inhibitor reduced the activation of ROCK1. Considering its anti-apoptosis activity in MI, ZYZ-168 may be a potential drug candidate for treatment of MI-induced cardiac fibrosis
    corecore